Matematika

Pertanyaan

diketahui tan β=8/15(β sudut antara vektor u dan v, β lancip). Jika panjang vektor |u|=17, panjang vektor |v|=4, hitunglah (vektor u-vektor v).2vektor u
pliss jawab pake caranya yang....(yg pake cara lengkap, gue bikin best answer)

2 Jawaban

  • #tan beta = 8/15 (tan = depan/samping)
    cos alfa = 15/17 (rumus phytagoras)

    cos a = u.v/|u|.|v|
    15/17 = u.v/17.4
    15/17 = u.v/68
    15/17 × 68 = u.v
    15.4 = u.v
    60 = u.v

    (u-v). 2u = 2u.u - 2u.v
    = 2.|u|* - 2u.v
    = 2(17)* - 2.60
    = 2(289) - 120
    = 578 - 120
    = 458

  • Tan b = 8/15 = de/sa => mi = √(8^2 + 15^2) = √(64 + 225) = √289 = 17
    Cos b = sa/mi = 15/17

    (u - v) . 2u
    = 2u.u - 2u.v
    = 2|u|^2 - 2 |u|.|v| cos b
    = 2(17)^2 - 2 . 17 . 4 . 15/17
    = 2(289) - 8 . 15
    = 578 - 120
    = 458

Pertanyaan Lainnya